extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C6).1C23 = C23⋊C4⋊5S3 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | 8- | (C2^2xC6).1C2^3 | 192,299 |
(C22×C6).2C23 = C23⋊D12 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 24 | 8+ | (C2^2xC6).2C2^3 | 192,300 |
(C22×C6).3C23 = C23.5D12 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | 8- | (C2^2xC6).3C2^3 | 192,301 |
(C22×C6).4C23 = S3×C23⋊C4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 24 | 8+ | (C2^2xC6).4C2^3 | 192,302 |
(C22×C6).5C23 = 2+ 1+4.5S3 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | 8- | (C2^2xC6).5C2^3 | 192,802 |
(C22×C6).6C23 = 2+ 1+4⋊7S3 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 24 | 8+ | (C2^2xC6).6C2^3 | 192,803 |
(C22×C6).7C23 = C24.67D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).7C2^3 | 192,1145 |
(C22×C6).8C23 = C24⋊7D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).8C2^3 | 192,1148 |
(C22×C6).9C23 = C24.44D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).9C2^3 | 192,1150 |
(C22×C6).10C23 = C24.45D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).10C2^3 | 192,1151 |
(C22×C6).11C23 = C12⋊(C4○D4) | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).11C2^3 | 192,1155 |
(C22×C6).12C23 = C6.322+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).12C2^3 | 192,1156 |
(C22×C6).13C23 = Dic6⋊19D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).13C2^3 | 192,1157 |
(C22×C6).14C23 = Dic6⋊20D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).14C2^3 | 192,1158 |
(C22×C6).15C23 = C4⋊C4.178D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).15C2^3 | 192,1159 |
(C22×C6).16C23 = C6.342+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).16C2^3 | 192,1160 |
(C22×C6).17C23 = C6.702- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).17C2^3 | 192,1161 |
(C22×C6).18C23 = C6.372+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).18C2^3 | 192,1164 |
(C22×C6).19C23 = C4⋊C4⋊21D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).19C2^3 | 192,1165 |
(C22×C6).20C23 = C6.382+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).20C2^3 | 192,1166 |
(C22×C6).21C23 = C6.402+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).21C2^3 | 192,1169 |
(C22×C6).22C23 = C6.732- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).22C2^3 | 192,1170 |
(C22×C6).23C23 = D12⋊20D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).23C2^3 | 192,1171 |
(C22×C6).24C23 = C6.422+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).24C2^3 | 192,1172 |
(C22×C6).25C23 = C6.432+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).25C2^3 | 192,1173 |
(C22×C6).26C23 = C6.442+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).26C2^3 | 192,1174 |
(C22×C6).27C23 = C6.462+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).27C2^3 | 192,1176 |
(C22×C6).28C23 = C6.792- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).28C2^3 | 192,1207 |
(C22×C6).29C23 = C4⋊C4.197D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).29C2^3 | 192,1208 |
(C22×C6).30C23 = C6.802- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).30C2^3 | 192,1209 |
(C22×C6).31C23 = S3×C22.D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).31C2^3 | 192,1211 |
(C22×C6).32C23 = C6.1202+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).32C2^3 | 192,1212 |
(C22×C6).33C23 = C6.1212+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).33C2^3 | 192,1213 |
(C22×C6).34C23 = C6.822- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).34C2^3 | 192,1214 |
(C22×C6).35C23 = C4⋊C4⋊28D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).35C2^3 | 192,1215 |
(C22×C6).36C23 = C6.632+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).36C2^3 | 192,1219 |
(C22×C6).37C23 = C6.642+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).37C2^3 | 192,1220 |
(C22×C6).38C23 = C6.652+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).38C2^3 | 192,1221 |
(C22×C6).39C23 = C6.662+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).39C2^3 | 192,1222 |
(C22×C6).40C23 = C6.672+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).40C2^3 | 192,1223 |
(C22×C6).41C23 = C6.852- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).41C2^3 | 192,1224 |
(C22×C6).42C23 = C42.233D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).42C2^3 | 192,1227 |
(C22×C6).43C23 = C42.137D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).43C2^3 | 192,1228 |
(C22×C6).44C23 = C42.138D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).44C2^3 | 192,1229 |
(C22×C6).45C23 = C42.139D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).45C2^3 | 192,1230 |
(C22×C6).46C23 = C42.140D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).46C2^3 | 192,1231 |
(C22×C6).47C23 = S3×C4.4D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).47C2^3 | 192,1232 |
(C22×C6).48C23 = C42⋊20D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).48C2^3 | 192,1233 |
(C22×C6).49C23 = C42.141D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).49C2^3 | 192,1234 |
(C22×C6).50C23 = D12⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).50C2^3 | 192,1235 |
(C22×C6).51C23 = Dic6⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).51C2^3 | 192,1236 |
(C22×C6).52C23 = C42⋊22D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).52C2^3 | 192,1237 |
(C22×C6).53C23 = C42⋊23D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).53C2^3 | 192,1238 |
(C22×C6).54C23 = C42.234D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).54C2^3 | 192,1239 |
(C22×C6).55C23 = C42.143D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).55C2^3 | 192,1240 |
(C22×C6).56C23 = C42.144D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).56C2^3 | 192,1241 |
(C22×C6).57C23 = C42⋊24D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).57C2^3 | 192,1242 |
(C22×C6).58C23 = C42.145D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).58C2^3 | 192,1243 |
(C22×C6).59C23 = C42.159D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).59C2^3 | 192,1260 |
(C22×C6).60C23 = C42.160D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).60C2^3 | 192,1261 |
(C22×C6).61C23 = S3×C42⋊2C2 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).61C2^3 | 192,1262 |
(C22×C6).62C23 = C42⋊25D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).62C2^3 | 192,1263 |
(C22×C6).63C23 = C42⋊26D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).63C2^3 | 192,1264 |
(C22×C6).64C23 = C42.189D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).64C2^3 | 192,1265 |
(C22×C6).65C23 = C42.161D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).65C2^3 | 192,1266 |
(C22×C6).66C23 = C42.162D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).66C2^3 | 192,1267 |
(C22×C6).67C23 = C42.163D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).67C2^3 | 192,1268 |
(C22×C6).68C23 = C42.164D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).68C2^3 | 192,1269 |
(C22×C6).69C23 = C42⋊27D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).69C2^3 | 192,1270 |
(C22×C6).70C23 = C42.165D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).70C2^3 | 192,1271 |
(C22×C6).71C23 = C42.166D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).71C2^3 | 192,1272 |
(C22×C6).72C23 = S3×C4⋊1D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).72C2^3 | 192,1273 |
(C22×C6).73C23 = C42⋊28D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).73C2^3 | 192,1274 |
(C22×C6).74C23 = C42.238D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).74C2^3 | 192,1275 |
(C22×C6).75C23 = D12⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).75C2^3 | 192,1276 |
(C22×C6).76C23 = Dic6⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).76C2^3 | 192,1277 |
(C22×C6).77C23 = C42.168D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).77C2^3 | 192,1278 |
(C22×C6).78C23 = C42⋊30D6 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).78C2^3 | 192,1279 |
(C22×C6).79C23 = D6.C24 | φ: C23/C1 → C23 ⊆ Aut C22×C6 | 48 | 8- | (C2^2xC6).79C2^3 | 192,1525 |
(C22×C6).80C23 = C6×C23⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).80C2^3 | 192,842 |
(C22×C6).81C23 = C3×C23.C23 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).81C2^3 | 192,843 |
(C22×C6).82C23 = C3×C2≀C22 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 24 | 4 | (C2^2xC6).82C2^3 | 192,890 |
(C22×C6).83C23 = C3×C23.7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).83C2^3 | 192,891 |
(C22×C6).84C23 = C3×C22.19C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).84C2^3 | 192,1414 |
(C22×C6).85C23 = C6×C4.4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).85C2^3 | 192,1415 |
(C22×C6).86C23 = C6×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).86C2^3 | 192,1417 |
(C22×C6).87C23 = C3×C23.36C23 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).87C2^3 | 192,1418 |
(C22×C6).88C23 = C6×C4⋊1D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).88C2^3 | 192,1419 |
(C22×C6).89C23 = C3×C22.26C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).89C2^3 | 192,1421 |
(C22×C6).90C23 = C3×C23⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).90C2^3 | 192,1423 |
(C22×C6).91C23 = C3×C22.29C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).91C2^3 | 192,1424 |
(C22×C6).92C23 = C3×C22.31C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).92C2^3 | 192,1426 |
(C22×C6).93C23 = C3×C22.32C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).93C2^3 | 192,1427 |
(C22×C6).94C23 = C3×C22.33C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).94C2^3 | 192,1428 |
(C22×C6).95C23 = C3×C22.34C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).95C2^3 | 192,1429 |
(C22×C6).96C23 = C3×C22.35C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).96C2^3 | 192,1430 |
(C22×C6).97C23 = C3×C22.36C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).97C2^3 | 192,1431 |
(C22×C6).98C23 = C3×D4⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).98C2^3 | 192,1435 |
(C22×C6).99C23 = C3×D4⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).99C2^3 | 192,1436 |
(C22×C6).100C23 = C3×Q8⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).100C2^3 | 192,1437 |
(C22×C6).101C23 = C3×Q8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).101C2^3 | 192,1439 |
(C22×C6).102C23 = C3×C22.47C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).102C2^3 | 192,1442 |
(C22×C6).103C23 = C3×C22.49C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).103C2^3 | 192,1444 |
(C22×C6).104C23 = C3×C22.50C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).104C2^3 | 192,1445 |
(C22×C6).105C23 = C3×C22.53C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).105C2^3 | 192,1448 |
(C22×C6).106C23 = C3×C22.54C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).106C2^3 | 192,1449 |
(C22×C6).107C23 = C3×C24⋊C22 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).107C2^3 | 192,1450 |
(C22×C6).108C23 = C3×C22.56C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).108C2^3 | 192,1451 |
(C22×C6).109C23 = C3×C22.57C24 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).109C2^3 | 192,1452 |
(C22×C6).110C23 = C3×C2.C25 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).110C2^3 | 192,1536 |
(C22×C6).111C23 = C2×C23.6D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).111C2^3 | 192,513 |
(C22×C6).112C23 = (C2×D12)⋊13C4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).112C2^3 | 192,565 |
(C22×C6).113C23 = C24⋊6D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 24 | 4 | (C2^2xC6).113C2^3 | 192,591 |
(C22×C6).114C23 = C22⋊C4⋊D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).114C2^3 | 192,612 |
(C22×C6).115C23 = C2×C23.7D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).115C2^3 | 192,778 |
(C22×C6).116C23 = (C6×D4)⋊10C4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).116C2^3 | 192,799 |
(C22×C6).117C23 = C2×Dic3.D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).117C2^3 | 192,1040 |
(C22×C6).118C23 = C2×C23.8D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).118C2^3 | 192,1041 |
(C22×C6).119C23 = C23⋊3Dic6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).119C2^3 | 192,1042 |
(C22×C6).120C23 = C2×S3×C22⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).120C2^3 | 192,1043 |
(C22×C6).121C23 = C2×Dic3⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).121C2^3 | 192,1044 |
(C22×C6).122C23 = C24.35D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).122C2^3 | 192,1045 |
(C22×C6).123C23 = C2×D6⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).123C2^3 | 192,1046 |
(C22×C6).124C23 = C2×C23.9D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).124C2^3 | 192,1047 |
(C22×C6).125C23 = C2×Dic3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).125C2^3 | 192,1048 |
(C22×C6).126C23 = C2×C23.21D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).126C2^3 | 192,1051 |
(C22×C6).127C23 = C23⋊4D12 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).127C2^3 | 192,1052 |
(C22×C6).128C23 = C24.41D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).128C2^3 | 192,1053 |
(C22×C6).129C23 = C24.42D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).129C2^3 | 192,1054 |
(C22×C6).130C23 = C42.87D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).130C2^3 | 192,1075 |
(C22×C6).131C23 = C42.88D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).131C2^3 | 192,1076 |
(C22×C6).132C23 = C42.89D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).132C2^3 | 192,1077 |
(C22×C6).133C23 = C42.90D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).133C2^3 | 192,1078 |
(C22×C6).134C23 = S3×C42⋊C2 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).134C2^3 | 192,1079 |
(C22×C6).135C23 = C42⋊9D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).135C2^3 | 192,1080 |
(C22×C6).136C23 = C42.188D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).136C2^3 | 192,1081 |
(C22×C6).137C23 = C42.91D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).137C2^3 | 192,1082 |
(C22×C6).138C23 = C42⋊10D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).138C2^3 | 192,1083 |
(C22×C6).139C23 = C42⋊11D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).139C2^3 | 192,1084 |
(C22×C6).140C23 = C42.92D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).140C2^3 | 192,1085 |
(C22×C6).141C23 = C42⋊12D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).141C2^3 | 192,1086 |
(C22×C6).142C23 = C42.93D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).142C2^3 | 192,1087 |
(C22×C6).143C23 = C42.94D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).143C2^3 | 192,1088 |
(C22×C6).144C23 = C42.95D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).144C2^3 | 192,1089 |
(C22×C6).145C23 = C42.96D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).145C2^3 | 192,1090 |
(C22×C6).146C23 = C42.97D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).146C2^3 | 192,1091 |
(C22×C6).147C23 = C42.98D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).147C2^3 | 192,1092 |
(C22×C6).148C23 = C42.99D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).148C2^3 | 192,1093 |
(C22×C6).149C23 = C42.100D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).149C2^3 | 192,1094 |
(C22×C6).150C23 = C4×D4⋊2S3 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).150C2^3 | 192,1095 |
(C22×C6).151C23 = D4×Dic6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).151C2^3 | 192,1096 |
(C22×C6).152C23 = C42.102D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).152C2^3 | 192,1097 |
(C22×C6).153C23 = D4⋊5Dic6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).153C2^3 | 192,1098 |
(C22×C6).154C23 = C42.104D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).154C2^3 | 192,1099 |
(C22×C6).155C23 = C42.105D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).155C2^3 | 192,1100 |
(C22×C6).156C23 = C42.106D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).156C2^3 | 192,1101 |
(C22×C6).157C23 = D4⋊6Dic6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).157C2^3 | 192,1102 |
(C22×C6).158C23 = C4×S3×D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).158C2^3 | 192,1103 |
(C22×C6).159C23 = C42⋊13D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).159C2^3 | 192,1104 |
(C22×C6).160C23 = C42.108D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).160C2^3 | 192,1105 |
(C22×C6).161C23 = C42⋊14D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).161C2^3 | 192,1106 |
(C22×C6).162C23 = C42.228D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).162C2^3 | 192,1107 |
(C22×C6).163C23 = D4×D12 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).163C2^3 | 192,1108 |
(C22×C6).164C23 = D12⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).164C2^3 | 192,1109 |
(C22×C6).165C23 = D12⋊24D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).165C2^3 | 192,1110 |
(C22×C6).166C23 = Dic6⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).166C2^3 | 192,1111 |
(C22×C6).167C23 = Dic6⋊24D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).167C2^3 | 192,1112 |
(C22×C6).168C23 = D4⋊5D12 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).168C2^3 | 192,1113 |
(C22×C6).169C23 = D4⋊6D12 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).169C2^3 | 192,1114 |
(C22×C6).170C23 = C42⋊18D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).170C2^3 | 192,1115 |
(C22×C6).171C23 = C42.229D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).171C2^3 | 192,1116 |
(C22×C6).172C23 = C42.113D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).172C2^3 | 192,1117 |
(C22×C6).173C23 = C42.114D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).173C2^3 | 192,1118 |
(C22×C6).174C23 = C42⋊19D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).174C2^3 | 192,1119 |
(C22×C6).175C23 = C42.115D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).175C2^3 | 192,1120 |
(C22×C6).176C23 = C42.116D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).176C2^3 | 192,1121 |
(C22×C6).177C23 = C42.117D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).177C2^3 | 192,1122 |
(C22×C6).178C23 = C42.118D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).178C2^3 | 192,1123 |
(C22×C6).179C23 = C42.119D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).179C2^3 | 192,1124 |
(C22×C6).180C23 = C24.43D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).180C2^3 | 192,1146 |
(C22×C6).181C23 = C24⋊8D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).181C2^3 | 192,1149 |
(C22×C6).182C23 = C24.46D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).182C2^3 | 192,1152 |
(C22×C6).183C23 = C24⋊9D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).183C2^3 | 192,1153 |
(C22×C6).184C23 = C24.47D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).184C2^3 | 192,1154 |
(C22×C6).185C23 = C6.712- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).185C2^3 | 192,1162 |
(C22×C6).186C23 = S3×C4⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).186C2^3 | 192,1163 |
(C22×C6).187C23 = C6.722- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).187C2^3 | 192,1167 |
(C22×C6).188C23 = D12⋊19D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).188C2^3 | 192,1168 |
(C22×C6).189C23 = C6.452+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).189C2^3 | 192,1175 |
(C22×C6).190C23 = C6.1152+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).190C2^3 | 192,1177 |
(C22×C6).191C23 = C6.472+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).191C2^3 | 192,1178 |
(C22×C6).192C23 = C6.482+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).192C2^3 | 192,1179 |
(C22×C6).193C23 = C6.492+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).193C2^3 | 192,1180 |
(C22×C6).194C23 = (Q8×Dic3)⋊C2 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).194C2^3 | 192,1181 |
(C22×C6).195C23 = C6.752- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).195C2^3 | 192,1182 |
(C22×C6).196C23 = C4⋊C4.187D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).196C2^3 | 192,1183 |
(C22×C6).197C23 = C6.152- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).197C2^3 | 192,1184 |
(C22×C6).198C23 = S3×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).198C2^3 | 192,1185 |
(C22×C6).199C23 = C4⋊C4⋊26D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).199C2^3 | 192,1186 |
(C22×C6).200C23 = C6.162- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).200C2^3 | 192,1187 |
(C22×C6).201C23 = C6.172- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).201C2^3 | 192,1188 |
(C22×C6).202C23 = D12⋊21D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).202C2^3 | 192,1189 |
(C22×C6).203C23 = D12⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).203C2^3 | 192,1190 |
(C22×C6).204C23 = Dic6⋊21D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).204C2^3 | 192,1191 |
(C22×C6).205C23 = Dic6⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).205C2^3 | 192,1192 |
(C22×C6).206C23 = C6.512+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).206C2^3 | 192,1193 |
(C22×C6).207C23 = C6.1182+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).207C2^3 | 192,1194 |
(C22×C6).208C23 = C6.522+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).208C2^3 | 192,1195 |
(C22×C6).209C23 = C6.532+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).209C2^3 | 192,1196 |
(C22×C6).210C23 = C6.202- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).210C2^3 | 192,1197 |
(C22×C6).211C23 = C6.212- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).211C2^3 | 192,1198 |
(C22×C6).212C23 = C6.222- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).212C2^3 | 192,1199 |
(C22×C6).213C23 = C6.232- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).213C2^3 | 192,1200 |
(C22×C6).214C23 = C6.772- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).214C2^3 | 192,1201 |
(C22×C6).215C23 = C6.242- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).215C2^3 | 192,1202 |
(C22×C6).216C23 = C6.562+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).216C2^3 | 192,1203 |
(C22×C6).217C23 = C6.782- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).217C2^3 | 192,1204 |
(C22×C6).218C23 = C6.252- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).218C2^3 | 192,1205 |
(C22×C6).219C23 = C6.592+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).219C2^3 | 192,1206 |
(C22×C6).220C23 = C6.812- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).220C2^3 | 192,1210 |
(C22×C6).221C23 = C6.612+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).221C2^3 | 192,1216 |
(C22×C6).222C23 = C6.1222+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).222C2^3 | 192,1217 |
(C22×C6).223C23 = C6.622+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).223C2^3 | 192,1218 |
(C22×C6).224C23 = C6.682+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).224C2^3 | 192,1225 |
(C22×C6).225C23 = C6.692+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).225C2^3 | 192,1226 |
(C22×C6).226C23 = C2×D4×Dic3 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).226C2^3 | 192,1354 |
(C22×C6).227C23 = C2×C23.23D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).227C2^3 | 192,1355 |
(C22×C6).228C23 = C2×C23.12D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).228C2^3 | 192,1356 |
(C22×C6).229C23 = C24.49D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).229C2^3 | 192,1357 |
(C22×C6).230C23 = D4×C3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).230C2^3 | 192,1360 |
(C22×C6).231C23 = C2×C23.14D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).231C2^3 | 192,1361 |
(C22×C6).232C23 = C2×C12⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).232C2^3 | 192,1362 |
(C22×C6).233C23 = C24⋊12D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).233C2^3 | 192,1363 |
(C22×C6).234C23 = C24.52D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).234C2^3 | 192,1364 |
(C22×C6).235C23 = C24.53D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).235C2^3 | 192,1365 |
(C22×C6).236C23 = C6.1042- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).236C2^3 | 192,1383 |
(C22×C6).237C23 = C6.1052- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).237C2^3 | 192,1384 |
(C22×C6).238C23 = Dic3×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).238C2^3 | 192,1385 |
(C22×C6).239C23 = C6.1442+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).239C2^3 | 192,1386 |
(C22×C6).240C23 = (C2×D4)⋊43D6 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).240C2^3 | 192,1387 |
(C22×C6).241C23 = C6.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).241C2^3 | 192,1388 |
(C22×C6).242C23 = C6.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).242C2^3 | 192,1389 |
(C22×C6).243C23 = C6.1072- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).243C2^3 | 192,1390 |
(C22×C6).244C23 = (C2×C12)⋊17D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).244C2^3 | 192,1391 |
(C22×C6).245C23 = C6.1082- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).245C2^3 | 192,1392 |
(C22×C6).246C23 = C6.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).246C2^3 | 192,1393 |
(C22×C6).247C23 = C2×S3×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).247C2^3 | 192,1520 |
(C22×C6).248C23 = C2×D4○D12 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).248C2^3 | 192,1521 |
(C22×C6).249C23 = C2×Q8○D12 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).249C2^3 | 192,1522 |
(C22×C6).250C23 = C6.C25 | φ: C23/C2 → C22 ⊆ Aut C22×C6 | 48 | 4 | (C2^2xC6).250C2^3 | 192,1523 |
(C22×C6).251C23 = C2×C6×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).251C2^3 | 192,1401 |
(C22×C6).252C23 = D4×C2×C12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).252C2^3 | 192,1404 |
(C22×C6).253C23 = C12×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).253C2^3 | 192,1406 |
(C22×C6).254C23 = C3×C22.11C24 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).254C2^3 | 192,1407 |
(C22×C6).255C23 = C3×C23.32C23 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).255C2^3 | 192,1408 |
(C22×C6).256C23 = C3×C23.33C23 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).256C2^3 | 192,1409 |
(C22×C6).257C23 = C6×C4⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).257C2^3 | 192,1411 |
(C22×C6).258C23 = C6×C22⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).258C2^3 | 192,1412 |
(C22×C6).259C23 = C6×C22.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).259C2^3 | 192,1413 |
(C22×C6).260C23 = C3×C23.37C23 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).260C2^3 | 192,1422 |
(C22×C6).261C23 = C3×C23.38C23 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).261C2^3 | 192,1425 |
(C22×C6).262C23 = C3×C23⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).262C2^3 | 192,1432 |
(C22×C6).263C23 = C3×C23.41C23 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).263C2^3 | 192,1433 |
(C22×C6).264C23 = C3×D42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).264C2^3 | 192,1434 |
(C22×C6).265C23 = C3×D4×Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).265C2^3 | 192,1438 |
(C22×C6).266C23 = C3×C22.45C24 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).266C2^3 | 192,1440 |
(C22×C6).267C23 = C3×C22.46C24 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).267C2^3 | 192,1441 |
(C22×C6).268C23 = C3×D4⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).268C2^3 | 192,1443 |
(C22×C6).269C23 = C2×C6×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).269C2^3 | 192,1533 |
(C22×C6).270C23 = C6×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).270C2^3 | 192,1535 |
(C22×C6).271C23 = (C2×C12)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).271C2^3 | 192,205 |
(C22×C6).272C23 = C6.(C4×Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).272C2^3 | 192,206 |
(C22×C6).273C23 = Dic3.5C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).273C2^3 | 192,207 |
(C22×C6).274C23 = Dic3⋊C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).274C2^3 | 192,208 |
(C22×C6).275C23 = C3⋊(C42⋊8C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).275C2^3 | 192,209 |
(C22×C6).276C23 = C3⋊(C42⋊5C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).276C2^3 | 192,210 |
(C22×C6).277C23 = C6.(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).277C2^3 | 192,211 |
(C22×C6).278C23 = C2.(C4×D12) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).278C2^3 | 192,212 |
(C22×C6).279C23 = C2.(C4×Dic6) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).279C2^3 | 192,213 |
(C22×C6).280C23 = Dic3⋊C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).280C2^3 | 192,214 |
(C22×C6).281C23 = (C2×C4)⋊Dic6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).281C2^3 | 192,215 |
(C22×C6).282C23 = C6.(C4⋊Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).282C2^3 | 192,216 |
(C22×C6).283C23 = (C2×Dic3).9D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).283C2^3 | 192,217 |
(C22×C6).284C23 = (C2×C4).17D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).284C2^3 | 192,218 |
(C22×C6).285C23 = (C2×C4).Dic6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).285C2^3 | 192,219 |
(C22×C6).286C23 = (C22×C4).85D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).286C2^3 | 192,220 |
(C22×C6).287C23 = (C22×C4).30D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).287C2^3 | 192,221 |
(C22×C6).288C23 = S3×C2.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).288C2^3 | 192,222 |
(C22×C6).289C23 = C22.58(S3×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).289C2^3 | 192,223 |
(C22×C6).290C23 = (C2×C4)⋊9D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).290C2^3 | 192,224 |
(C22×C6).291C23 = D6⋊C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).291C2^3 | 192,225 |
(C22×C6).292C23 = D6⋊(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).292C2^3 | 192,226 |
(C22×C6).293C23 = D6⋊C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).293C2^3 | 192,227 |
(C22×C6).294C23 = D6⋊C4⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).294C2^3 | 192,228 |
(C22×C6).295C23 = D6⋊C4⋊3C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).295C2^3 | 192,229 |
(C22×C6).296C23 = (C2×C12)⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).296C2^3 | 192,230 |
(C22×C6).297C23 = C6.C22≀C2 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).297C2^3 | 192,231 |
(C22×C6).298C23 = (C22×S3)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).298C2^3 | 192,232 |
(C22×C6).299C23 = (C2×C4).21D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).299C2^3 | 192,233 |
(C22×C6).300C23 = C6.(C4⋊D4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).300C2^3 | 192,234 |
(C22×C6).301C23 = (C22×C4).37D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).301C2^3 | 192,235 |
(C22×C6).302C23 = (C2×C12).33D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).302C2^3 | 192,236 |
(C22×C6).303C23 = C12⋊4(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).303C2^3 | 192,487 |
(C22×C6).304C23 = (C2×Dic6)⋊7C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).304C2^3 | 192,488 |
(C22×C6).305C23 = Dic3×C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).305C2^3 | 192,489 |
(C22×C6).306C23 = C4×Dic3⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).306C2^3 | 192,490 |
(C22×C6).307C23 = C42⋊6Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).307C2^3 | 192,491 |
(C22×C6).308C23 = (C2×C42).6S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).308C2^3 | 192,492 |
(C22×C6).309C23 = C4×C4⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).309C2^3 | 192,493 |
(C22×C6).310C23 = C42⋊10Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).310C2^3 | 192,494 |
(C22×C6).311C23 = C42⋊11Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).311C2^3 | 192,495 |
(C22×C6).312C23 = C42⋊7Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).312C2^3 | 192,496 |
(C22×C6).313C23 = C4×D6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).313C2^3 | 192,497 |
(C22×C6).314C23 = (C2×C4)⋊6D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).314C2^3 | 192,498 |
(C22×C6).315C23 = (C2×C42)⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).315C2^3 | 192,499 |
(C22×C6).316C23 = Dic3×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).316C2^3 | 192,500 |
(C22×C6).317C23 = C24.55D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).317C2^3 | 192,501 |
(C22×C6).318C23 = C24.56D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).318C2^3 | 192,502 |
(C22×C6).319C23 = C24.14D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).319C2^3 | 192,503 |
(C22×C6).320C23 = C24.15D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).320C2^3 | 192,504 |
(C22×C6).321C23 = C24.57D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).321C2^3 | 192,505 |
(C22×C6).322C23 = C23⋊2Dic6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).322C2^3 | 192,506 |
(C22×C6).323C23 = C24.17D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).323C2^3 | 192,507 |
(C22×C6).324C23 = C24.18D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).324C2^3 | 192,508 |
(C22×C6).325C23 = C24.58D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).325C2^3 | 192,509 |
(C22×C6).326C23 = C24.19D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).326C2^3 | 192,510 |
(C22×C6).327C23 = C24.20D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).327C2^3 | 192,511 |
(C22×C6).328C23 = C24.21D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).328C2^3 | 192,512 |
(C22×C6).329C23 = C24.59D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).329C2^3 | 192,514 |
(C22×C6).330C23 = C24.23D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).330C2^3 | 192,515 |
(C22×C6).331C23 = C24.24D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).331C2^3 | 192,516 |
(C22×C6).332C23 = C24.60D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).332C2^3 | 192,517 |
(C22×C6).333C23 = C24.25D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).333C2^3 | 192,518 |
(C22×C6).334C23 = C23⋊3D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).334C2^3 | 192,519 |
(C22×C6).335C23 = C24.27D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).335C2^3 | 192,520 |
(C22×C6).336C23 = C12⋊(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).336C2^3 | 192,531 |
(C22×C6).337C23 = C4.(D6⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).337C2^3 | 192,532 |
(C22×C6).338C23 = Dic3×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).338C2^3 | 192,533 |
(C22×C6).339C23 = (C4×Dic3)⋊8C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).339C2^3 | 192,534 |
(C22×C6).340C23 = Dic3⋊(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).340C2^3 | 192,535 |
(C22×C6).341C23 = (C4×Dic3)⋊9C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).341C2^3 | 192,536 |
(C22×C6).342C23 = C6.67(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).342C2^3 | 192,537 |
(C22×C6).343C23 = (C2×Dic3)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).343C2^3 | 192,538 |
(C22×C6).344C23 = C4⋊C4⋊5Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).344C2^3 | 192,539 |
(C22×C6).345C23 = (C2×C4).44D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).345C2^3 | 192,540 |
(C22×C6).346C23 = (C2×C12).54D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).346C2^3 | 192,541 |
(C22×C6).347C23 = (C2×Dic3).Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).347C2^3 | 192,542 |
(C22×C6).348C23 = C4⋊C4⋊6Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).348C2^3 | 192,543 |
(C22×C6).349C23 = (C2×C12).288D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).349C2^3 | 192,544 |
(C22×C6).350C23 = (C2×C12).55D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).350C2^3 | 192,545 |
(C22×C6).351C23 = C4⋊(D6⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).351C2^3 | 192,546 |
(C22×C6).352C23 = (C2×D12)⋊10C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).352C2^3 | 192,547 |
(C22×C6).353C23 = D6⋊C4⋊6C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).353C2^3 | 192,548 |
(C22×C6).354C23 = D6⋊C4⋊7C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).354C2^3 | 192,549 |
(C22×C6).355C23 = (C2×C4)⋊3D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).355C2^3 | 192,550 |
(C22×C6).356C23 = (C2×C12).289D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).356C2^3 | 192,551 |
(C22×C6).357C23 = (C2×C12).290D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).357C2^3 | 192,552 |
(C22×C6).358C23 = (C2×C12).56D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).358C2^3 | 192,553 |
(C22×C6).359C23 = C2×C6.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).359C2^3 | 192,767 |
(C22×C6).360C23 = C4×C6.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).360C2^3 | 192,768 |
(C22×C6).361C23 = C24.73D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).361C2^3 | 192,769 |
(C22×C6).362C23 = C24.74D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).362C2^3 | 192,770 |
(C22×C6).363C23 = C24.75D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).363C2^3 | 192,771 |
(C22×C6).364C23 = C24.76D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).364C2^3 | 192,772 |
(C22×C6).365C23 = C24.29D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).365C2^3 | 192,779 |
(C22×C6).366C23 = C24.30D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).366C2^3 | 192,780 |
(C22×C6).367C23 = C24.31D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).367C2^3 | 192,781 |
(C22×C6).368C23 = C24.32D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).368C2^3 | 192,782 |
(C22×C6).369C23 = (C6×Q8)⋊7C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).369C2^3 | 192,788 |
(C22×C6).370C23 = C22.52(S3×Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).370C2^3 | 192,789 |
(C22×C6).371C23 = (C22×Q8)⋊9S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).371C2^3 | 192,790 |
(C22×C6).372C23 = C25.4S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).372C2^3 | 192,806 |
(C22×C6).373C23 = C2×C4×Dic6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).373C2^3 | 192,1026 |
(C22×C6).374C23 = C2×C12⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).374C2^3 | 192,1027 |
(C22×C6).375C23 = C2×C12.6Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).375C2^3 | 192,1028 |
(C22×C6).376C23 = C42.274D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).376C2^3 | 192,1029 |
(C22×C6).377C23 = S3×C2×C42 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).377C2^3 | 192,1030 |
(C22×C6).378C23 = C2×C42⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).378C2^3 | 192,1031 |
(C22×C6).379C23 = C2×C4×D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).379C2^3 | 192,1032 |
(C22×C6).380C23 = C4×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).380C2^3 | 192,1033 |
(C22×C6).381C23 = C2×C4⋊D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).381C2^3 | 192,1034 |
(C22×C6).382C23 = C2×C42⋊7S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).382C2^3 | 192,1035 |
(C22×C6).383C23 = C42.276D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).383C2^3 | 192,1036 |
(C22×C6).384C23 = C2×C42⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).384C2^3 | 192,1037 |
(C22×C6).385C23 = C42.277D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).385C2^3 | 192,1038 |
(C22×C6).386C23 = C2×C23.16D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).386C2^3 | 192,1039 |
(C22×C6).387C23 = C24.38D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).387C2^3 | 192,1049 |
(C22×C6).388C23 = C2×C23.11D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).388C2^3 | 192,1050 |
(C22×C6).389C23 = C2×Dic6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).389C2^3 | 192,1055 |
(C22×C6).390C23 = C2×C12⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).390C2^3 | 192,1056 |
(C22×C6).391C23 = C2×Dic3.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).391C2^3 | 192,1057 |
(C22×C6).392C23 = C2×C4.Dic6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).392C2^3 | 192,1058 |
(C22×C6).393C23 = C6.72+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).393C2^3 | 192,1059 |
(C22×C6).394C23 = C2×S3×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).394C2^3 | 192,1060 |
(C22×C6).395C23 = C2×C4⋊C4⋊7S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).395C2^3 | 192,1061 |
(C22×C6).396C23 = C2×Dic3⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).396C2^3 | 192,1062 |
(C22×C6).397C23 = C6.82+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).397C2^3 | 192,1063 |
(C22×C6).398C23 = C2×D6.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).398C2^3 | 192,1064 |
(C22×C6).399C23 = C2×C12⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).399C2^3 | 192,1065 |
(C22×C6).400C23 = C6.2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).400C2^3 | 192,1066 |
(C22×C6).401C23 = C2×D6⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).401C2^3 | 192,1067 |
(C22×C6).402C23 = C2×C4.D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).402C2^3 | 192,1068 |
(C22×C6).403C23 = C6.2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).403C2^3 | 192,1069 |
(C22×C6).404C23 = C6.102+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).404C2^3 | 192,1070 |
(C22×C6).405C23 = C2×C4⋊C4⋊S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).405C2^3 | 192,1071 |
(C22×C6).406C23 = C6.52- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).406C2^3 | 192,1072 |
(C22×C6).407C23 = C6.112+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).407C2^3 | 192,1073 |
(C22×C6).408C23 = C6.62- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).408C2^3 | 192,1074 |
(C22×C6).409C23 = Dic3×C22×C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).409C2^3 | 192,1341 |
(C22×C6).410C23 = C22×Dic3⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).410C2^3 | 192,1342 |
(C22×C6).411C23 = C2×C12.48D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).411C2^3 | 192,1343 |
(C22×C6).412C23 = C22×C4⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).412C2^3 | 192,1344 |
(C22×C6).413C23 = C2×C23.26D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).413C2^3 | 192,1345 |
(C22×C6).414C23 = C22×D6⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).414C2^3 | 192,1346 |
(C22×C6).415C23 = C2×C4×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).415C2^3 | 192,1347 |
(C22×C6).416C23 = C2×C23.28D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).416C2^3 | 192,1348 |
(C22×C6).417C23 = C2×C12⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).417C2^3 | 192,1349 |
(C22×C6).418C23 = C24.83D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).418C2^3 | 192,1350 |
(C22×C6).419C23 = C2×D6⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).419C2^3 | 192,1359 |
(C22×C6).420C23 = C2×Dic3⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).420C2^3 | 192,1369 |
(C22×C6).421C23 = C2×Q8×Dic3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).421C2^3 | 192,1370 |
(C22×C6).422C23 = C6.422- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).422C2^3 | 192,1371 |
(C22×C6).423C23 = C2×D6⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).423C2^3 | 192,1372 |
(C22×C6).424C23 = C2×C12.23D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).424C2^3 | 192,1373 |
(C22×C6).425C23 = Q8×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).425C2^3 | 192,1374 |
(C22×C6).426C23 = C6.442- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).426C2^3 | 192,1375 |
(C22×C6).427C23 = C6.452- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).427C2^3 | 192,1376 |
(C22×C6).428C23 = C22×C6.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).428C2^3 | 192,1398 |
(C22×C6).429C23 = C2×C24⋊4S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 48 | | (C2^2xC6).429C2^3 | 192,1399 |
(C22×C6).430C23 = C23×Dic6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).430C2^3 | 192,1510 |
(C22×C6).431C23 = S3×C23×C4 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).431C2^3 | 192,1511 |
(C22×C6).432C23 = C23×D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).432C2^3 | 192,1512 |
(C22×C6).433C23 = C22×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).433C2^3 | 192,1513 |
(C22×C6).434C23 = C22×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).434C2^3 | 192,1515 |
(C22×C6).435C23 = C22×S3×Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).435C2^3 | 192,1517 |
(C22×C6).436C23 = C22×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).436C2^3 | 192,1518 |
(C22×C6).437C23 = C2×Q8.15D6 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 96 | | (C2^2xC6).437C2^3 | 192,1519 |
(C22×C6).438C23 = Dic3×C24 | φ: C23/C22 → C2 ⊆ Aut C22×C6 | 192 | | (C2^2xC6).438C2^3 | 192,1528 |
(C22×C6).439C23 = C6×C2.C42 | central extension (φ=1) | 192 | | (C2^2xC6).439C2^3 | 192,808 |
(C22×C6).440C23 = C3×C42⋊4C4 | central extension (φ=1) | 192 | | (C2^2xC6).440C2^3 | 192,809 |
(C22×C6).441C23 = C12×C22⋊C4 | central extension (φ=1) | 96 | | (C2^2xC6).441C2^3 | 192,810 |
(C22×C6).442C23 = C12×C4⋊C4 | central extension (φ=1) | 192 | | (C2^2xC6).442C2^3 | 192,811 |
(C22×C6).443C23 = C3×C24⋊3C4 | central extension (φ=1) | 48 | | (C2^2xC6).443C2^3 | 192,812 |
(C22×C6).444C23 = C3×C23.7Q8 | central extension (φ=1) | 96 | | (C2^2xC6).444C2^3 | 192,813 |
(C22×C6).445C23 = C3×C23.34D4 | central extension (φ=1) | 96 | | (C2^2xC6).445C2^3 | 192,814 |
(C22×C6).446C23 = C3×C42⋊8C4 | central extension (φ=1) | 192 | | (C2^2xC6).446C2^3 | 192,815 |
(C22×C6).447C23 = C3×C42⋊5C4 | central extension (φ=1) | 192 | | (C2^2xC6).447C2^3 | 192,816 |
(C22×C6).448C23 = C3×C42⋊9C4 | central extension (φ=1) | 192 | | (C2^2xC6).448C2^3 | 192,817 |
(C22×C6).449C23 = C3×C23.8Q8 | central extension (φ=1) | 96 | | (C2^2xC6).449C2^3 | 192,818 |
(C22×C6).450C23 = C3×C23.23D4 | central extension (φ=1) | 96 | | (C2^2xC6).450C2^3 | 192,819 |
(C22×C6).451C23 = C3×C23.63C23 | central extension (φ=1) | 192 | | (C2^2xC6).451C2^3 | 192,820 |
(C22×C6).452C23 = C3×C24.C22 | central extension (φ=1) | 96 | | (C2^2xC6).452C2^3 | 192,821 |
(C22×C6).453C23 = C3×C23.65C23 | central extension (φ=1) | 192 | | (C2^2xC6).453C2^3 | 192,822 |
(C22×C6).454C23 = C3×C24.3C22 | central extension (φ=1) | 96 | | (C2^2xC6).454C2^3 | 192,823 |
(C22×C6).455C23 = C3×C23.67C23 | central extension (φ=1) | 192 | | (C2^2xC6).455C2^3 | 192,824 |
(C22×C6).456C23 = C3×C23⋊2D4 | central extension (φ=1) | 96 | | (C2^2xC6).456C2^3 | 192,825 |
(C22×C6).457C23 = C3×C23⋊Q8 | central extension (φ=1) | 96 | | (C2^2xC6).457C2^3 | 192,826 |
(C22×C6).458C23 = C3×C23.10D4 | central extension (φ=1) | 96 | | (C2^2xC6).458C2^3 | 192,827 |
(C22×C6).459C23 = C3×C23.78C23 | central extension (φ=1) | 192 | | (C2^2xC6).459C2^3 | 192,828 |
(C22×C6).460C23 = C3×C23.Q8 | central extension (φ=1) | 96 | | (C2^2xC6).460C2^3 | 192,829 |
(C22×C6).461C23 = C3×C23.11D4 | central extension (φ=1) | 96 | | (C2^2xC6).461C2^3 | 192,830 |
(C22×C6).462C23 = C3×C23.81C23 | central extension (φ=1) | 192 | | (C2^2xC6).462C2^3 | 192,831 |
(C22×C6).463C23 = C3×C23.4Q8 | central extension (φ=1) | 96 | | (C2^2xC6).463C2^3 | 192,832 |
(C22×C6).464C23 = C3×C23.83C23 | central extension (φ=1) | 192 | | (C2^2xC6).464C2^3 | 192,833 |
(C22×C6).465C23 = C3×C23.84C23 | central extension (φ=1) | 192 | | (C2^2xC6).465C2^3 | 192,834 |
(C22×C6).466C23 = C2×C6×C4⋊C4 | central extension (φ=1) | 192 | | (C2^2xC6).466C2^3 | 192,1402 |
(C22×C6).467C23 = C6×C42⋊C2 | central extension (φ=1) | 96 | | (C2^2xC6).467C2^3 | 192,1403 |
(C22×C6).468C23 = Q8×C2×C12 | central extension (φ=1) | 192 | | (C2^2xC6).468C2^3 | 192,1405 |
(C22×C6).469C23 = C6×C42.C2 | central extension (φ=1) | 192 | | (C2^2xC6).469C2^3 | 192,1416 |
(C22×C6).470C23 = C6×C4⋊Q8 | central extension (φ=1) | 192 | | (C2^2xC6).470C2^3 | 192,1420 |
(C22×C6).471C23 = Q8×C22×C6 | central extension (φ=1) | 192 | | (C2^2xC6).471C2^3 | 192,1532 |